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Critical line of an anisotropic Ising antiferromagnet on square and honeycomb lattices

Xian-Zhi Wang and Jai Sam Kim
Department of Physics, Pohang University of Science and Technology, Pohang 790-784, South Korea

~Received 20 March 1997!

Using the approach that we developed recently, we find the critical line of an anisotropic Ising antiferro-
magnet on two-dimensional square and honeycomb lattices. We extend our previous lemma and conjecture to
be useful in the antiferromagnetic system. We find two interesting behaviors:~1! An antiferromagnet is not
necessarily most inert at the absolute zero.~2! The field-driven antiferromagnetic phase transition is possible in
the honeycomb lattice.@S1063-651X~97!12409-6#

PACS number~s!: 05.50.1q, 64.60.Cn, 75.10.Hk, 75.40.Cx
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I. INTRODUCTION

One of the longstanding problems in statistical physics
the Ising model in nonzero magnetic field~except at one
dimension! @1,2#. We do not have the precise knowledge
its thermodynamic properties. Particular interest has focu
on its critical properties. Although no exact solutions ex
some exact results have been estabished. The most fa
among these results is the Yang-Lee circle theorem@3#,
which states that the roots of the partition function of
Ising ferromagnet in the complex fugacity plane are distr
uted on a unit circle. In the thermodynamic limit the ro
distribution approaches the positive real axis and gives
critical point. The Yang-Lee circle theorem asserts that
critical line of an Ising antiferromagnet is located ath50 for
T,Tc .

The circle theorem was so useful that there were m
attempts to extend it. The theorem was extended to the c
of higher-order Ising model@4#, Ising models with multiple
spin interactions, the quantum Heisenberg model@5#, the
classicalXY and Heisenberg model@6#, and some continu-
ous spin systems@7#. Ruelle @8# extended the theorem t
noncircular regions. Lee@9# presented a generalized circ
theorem to the asymmetric transitions and further to a c
tinuum system.

For a lattice model in the absence of magnetic field, i
convenient to consider the zeros of the canonical parti
function in the complex temperature plane. Fisher@10#
proved that for the square lattice Ising model, in the therm
dynamic limit, the zeros are distributed on circles and
logarithmic singularity occurs as a consequence of the z
distribution. However, for other lattice Ising models, the ze
distributions are complicated@11,12#. The zero distributions
of Potts models were studied in@13#.

However, for an Ising antiferromagnet in a nonzero ma
netic field, no such theorem exists, and the situation is m
more complicated. The traditional mean-field metho
cannot give reasonable results. The series expansion me
was widely used to study the properties of the Ising mode
a nonzero field@14#. Müller-Hartmann and Zittartz@15# ob-
tained a good approximation of the critical line of an Isi
antiferromagnet on a square lattice by considering an in
face free energy. Later Lin and Wu@16# extended this
method to the anisotropic Ising antiferromagnet on a tri
gular lattice. Wu and co-workers@17,18# introduced an ap-
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proach mapping the Ising model into the vertex model a
considered the critical lines as the invariant of some tra
formation.

Recently we introduced a new approach considering ze
of the Ising partition function on an elementary cycle
square, triangular and honeycomb lattices, and determ
the critical line of an isotropic Ising antiferromagnet o
square and honeycomb lattices@19#. In this paper we extend
this approach to obtain the critical lines of an anisotro
Ising antiferromagnet on square and honeycomb lattices.
compare our results with those obtained by Mu¨ller-Hartmann
and Zittartz @15# for an anisotropic antiferromagnet on
square lattice. We confirm that the limiting behavior of t
critical line in the low-T limit agrees reasonably with th
existing results found by others@15,17,20# with slight differ-
ences. We find two interesting behaviors. In the cases
square lattice with (K1.0, K2,0) and a honeycomb lattice
with (K1,0, K2,0, K3,0) and (K1,0, K2.0, K3.0),
the critical line has a maximum at a temperatureTmÞ0,
which means that for a given magnetic field two phase tr
sitions are possible as predicted by Ziman@21# and con-
firmed by a Monte Carlo simulation of an Ising antiferr
magnet on a body-centered cubic lattice@22#. It also means
that the antiferromagnet is not necessarily most inert aga
demagnetizing field at the absolute zero. In the case o
honeycomb lattice with (K1.0, K2,0, K3,0) a field-
driven antiferromagnetic phase transition is possible as
dicted in an antiferromagnet on a triangular lattice@16,23#.

The paper is organized as follows. In Sec. II we expla
our basic approach used in Ref.@19#, and extend the lemma
conjecture. In Sec. III we consider the square lattice. W
present the critical lines, critical temperatures, andTm . We
derive the low-T limit of the critical line, and give a heuristic
explanation for the zero temperature critical field. In Sec.
we repeat the procedure for the honeycomb lattice.

II. BASIC APPROACH

The partition function of an Ising model in magnetic fie
is given by

Z5(
[si ]

expFbS (̂
i j &

Ki j sisj1h(
i

si D G , ~1!

wheresi561 andKi j is the interaction strength. We con
2793 © 1997 The American Physical Society
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2794 56XIAN-ZHI WANG AND JAI SAM KIM
sider the simplest case that the sum^ i j & runs over the pairs
of nearest neighhbors on the lattices.Ki j .0 corresponds to
the ferromagnetic case, andKi j ,0 to the antiferromagnetic
case. The Ising partition function on each elementary cy
of the triangular, square, and honeycomb lattices are

zt52@eb~K11K21K3!1eb~2K12K21K3!1eb~2K22K31K1!

1eb~2K32K11K2!#, ~2!

zs52@e2b~K11K2!1e2b~K12K2!1e22b~K12K2!

1e22b~K11K2!14#, ~3!

zh52@e2b~K11K21K3!14e2bK114e2bK214e2bK314e22bK1

14e22bK214e22bK31e2b~K11K22K3!1e2b~K21K32K1!

1e2b~K31K12K2!1e22b~K11K22K3!1e22b~K21K32K1!

1e22b~K31K12K2!1e22b~K11K21K3!#, ~4!

whereK j are the interaction strengths.
Our approach was inspired by the following observatio
Lemma 1:Let the Ising partition function on an elemen

tary cycle of the square, triangular, and honeycomb latti
be z5z(T,h50). Make a transformation exp(2bKj)
→ i exp(2bKj) and thusz→z8. Then the critical tempera
tures of an Ising ferromagnet on square, triangular and h
eycomb lattices in the absence of magnetic field are given
the real solutions ofz850.

The transformed partition functions are

zt852i 3/2@eb~K11K21K3!2eb~2K12K21K3!2eb~2K22K31K1!

2eb~2K32K11K2!#

52i 3/2~z1z2z3!21/2~12z1z22z2z32z3z1!, ~5!

zs852@2e2b~K11K2!1e2b~K12K2!1e22b~K12K2!

2e22b~K11K2!14#

52~z1z2!21@~z11z2!22~12z1z2!2#, ~6!

zh852i @2e2b~K11K21K3!14e2bK114e2bK214e2bK3

24e22bK124e22bK224e22bK31e2b~K11K22K3!

1e2b~K21K32K1!1e2b~K31K12K2!2e22b~K11K22K3!

2e22b~K21K32K1!2e22b~K31K12K2!1e22b~K11K21K3!#

522i ~z1z2z3!21@~12z1z22z2z32z3z1!2

2~z11z21z32z1z2z3!2#. ~7!

wherez j[exp(22bKj). Indeed, it is easy to verify that th
real solutions ofz850 give the exact zero-field critical tem
peratures of an Ising ferromagnet: square,z1z21z11z251;
triangular, z1z21z2z31z3z151; and honeycomb
z1z2z32z1z22z2z32z3z12z12z22z31150.

The Ising partition function on an elementary cycle
square and honeycomb lattices, Eqs.~3! and ~4!, are invari-
ant under the symmetry operations,Ki→2Ki . Equations~6!
and~7! have the same symmetry modulo overall sign. For
le

.

s

n-
y

n

Ising antiferromagnet on the square and honeycomb latti
the zero-field critical conditions@2# were obtained: square
z1z21z11z251; and honeycomb, z1z2z3
2z1z22z2z32z3z12z12z22z31150, where
z j[exp(22buKju). Thus the critical temperatures of an Isin
ferromagnet and an Ising antiferromagnet on the same k
of lattice, square or honeycomb, must be identical in
absence of magnetic field. Accordingly our lemma 1 is e
tended to:

Lemma 2:Let the Ising partition function on an elemen
tary cycle of the square and honeycomb lattices
z5z(T,h50). Make a transformation exp(2buKju)
→ i exp(2buKju), and thusz→z8. Then the critical tempera
tures of an Ising antiferromagnet on square and honeyco
lattices in the absence of magnetic field are given by the
solutions ofz850.

However, our lemma 1 cannot be extended for a trian
lar lattice due to lack of symmetry.

In 1970 Griffiths@24,25# proposed the smoothness post
late. He reasoned that since on the boundary between
antiferromagnetic and paramagnetic phases there is noa pri-
ori reason to single out the particular point corresponding
zero field, it is reasonable to assume that the singularity
the free energy does not change its basic character along
boundary. This postulate was verified by Rapaport a
Domb @25#.

We use this postulate and take lemma 2 as the boun
condition for h50. Since at the critical point
(]h/]M )Tc

50, it follows that along the critical line

(]h/]M )T50 @26#. For a square lattice Ising model, th
spontaneous magnetization is given by@27#

M ~T,Tc ,h50!5F12S 2z1

12z1
2

2z2

12z2
2D 2G1/8

;@z8~T,h50!#1/8. ~8!

According to Griffiths we assume that in a nonzero magne
field, near the critical line, the magnetization strength ta
the same functional form as the case forh50,

M ~T,Tc ,h!5g~T,h!@g~T,h!#1/8, ~9!

whereg(T,h) andg(T,h) are nonsingular analytic function
of T andh. g(T,h) is related to the partition function on a
elementary cycle, withg(T,h50)5z8(T,h50). Thus

S ]M

]h D
T

5
]g

]h
@g~T,h!#1/81

g

8

]g

]h
@g~T,h!#27/8. ~10!

Sinceg(T,h), g(T,h) and their derivatives with respect toh
do not approach infinity for arbitraryh, along the critical line
(]h/]M )T50 requires g(T,h)50. Therefore we might
plausibly extend lemma 2 to the case of nonzero magn
field.

Conjecture:Let the Ising partition function on an elemen
tary cycle of square and honeycomb lattices bez5z(T,h).
Make a transformation

pj5e2buK j u→pj85 ie2buK j u and uhu→ f ~ uhu!. ~11!
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56 2795CRITICAL LINE OF AN ANISOTROPIC ISING . . .
Thus z→z8 with the boundary conditionsf (0)50. Here
f (h) is assumed to be a real and analytic function ofh. Then
the critical line is given byg(T,h)5z850.

Let us recall how the conjecture was used to find
critical line of an isotropic Ising antiferromagnet on squa
and honeycomb lattices@19#. The Ising partition function on
an elementary cycle of square and honeycomb lattices, in
isotropic case, can be written as

z5l1
N 1l2

N , ~12!

wherel65ebK@coshbh6(sinh2bh1e24bK)1/2#, andN is the
number of the edges of an elementary cycle. Making
transformation gives the critical line of an isotropic Isin
antiferromagnet on square and honeycomb lattices, whic

e4buKu5e4bcuKucosh2b f ~ uhu!1sinh2b f ~ uhu!. ~13!

To the first-order approximation,f (h)52h/q, the critical
line is given by

e4buKu5cot2Fp~q22!

4q Gcosh2S 2bh

q D1sinh2S 2bh

q D ,

~14!

whereq is the coordination number. Here we used the f
mula

e22bcK5tanFp~q22!

4q G . ~15!

To the third-order approximation,

f ~ uhu!5Auhu1Buhu2/uKu1Cuhu3/uKu2. ~16!

In our previous work@19# we used a set of coefficients
A50.542 578, B50.003 487 3, and C520.003 532 95
for a square lattice to fit the data in Refs.@15,28#
and A50.691 515 07, B520.003 105 195, and
C520.001 725 869 for a honeycomb lattice to fit the data
Ref. @17#.

In the following discussions we will use a popular not
tion for h andT: h[h/K andt[kT/K. h andt are dimen-
sionless quantities measuring the magnetic field and t
perature.

III. SQUARE LATTICE

The Ising partition function on an elementary cycle of t
square lattice in magnetic field is given by

zs~T,h!5e2b~K11K2!~e4bh1e24bh!14~e2bh1e22bh!

12e2b~K12K2!12e22b~K12K2!12e22b~K11K2!.

~17!

There can be two distinct combinations of coupling co
ficients, (K1 ,K2), for an anisotropic antiferromagnet. W
need to work on each case separately.

A. Case„i…: K1<0, K2<0

The Ising partition function~17! of the square lattice can
be rewritten as
e

he

e

is

-

-

-

z~T,h!5e22b~ uK1u1uK2u!~e4bh1e24bh!14~e2bh1e22bh!

12e2b~ uK1u2uK2u!12e22b~ uK1u2uK2u!

12e2b~ uK1u1uK2u!. ~18!

Making the transformation, exp(2buK1u)→i exp(2buK1u),
exp(2buK2u)→i exp(2buK2u) and uhu→ f (uhu), we obtain the
critical line as the zero of

2e22b~ uK1u1uK2u!@e4b f ~ uhu!1e24b f ~ uhu!#14@e2b f ~ uhu!

1e22b f ~ uhu!#12e2b~ uK1u2uK2u!12e22b~ uK1u2uK2u!

22e2b~ uK1u1uK2u!50. ~19!

The zero-field limit of Eq.~19! reduces to the Onsager’s@29#
formula for the critical temperature,

15sinh~2buK1u!sinh~2buK2u!. ~20!

We may assumeuK1u>uK2u without loss of generality.
Let us define two parameters,uK1u5K anduK2u5gK. Using
the first-order approximation,f (h)'Ah, we made a sample
plot of Eq. ~19! in Fig. 1. As the temperature decreases
antiferromagnetic phase of the system tolerates higher
higher demagnetizing field. AsK is increasedhc rises mono-
tonically to the maximum value. At theT→0 limit, we have

Ahc5uK1u1uK2u. ~21!

The zero field critical temperature,tc is an increasing func-
tion of g; see Fig. 2. Thus as the coupling strengthuK2u
increases, the onset of antiferromagnetism occurs at hig
and higher temperature.

Let us obtain the approximate form of the critical line
the T→0 limit. Since within the first-order approximatio
(uK1u1uK2u)'Ah in the T→01 limit, the largest terms in
Eq. ~19! are

2e22b~ uK1u1uK2u!e4bAh14e2bAh22e2b~ uK1u1uK2u!'0.
~22!

Solving Eq.~22! for e2bAh, we obtain

e2bAh'~22A2!e2b~ uK1u1uK2u!, ~23!

FIG. 1. Critical line of an Ising antiferromagnet on a squa
lattice: K1,0 andK2,0.
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2796 56XIAN-ZHI WANG AND JAI SAM KIM
which reduces to

Ah'2
kT

2
ln

21A2

2
1~ uK1u1uK2u!. ~24!

The constantA is related to the spin configuratio
of the ground state. The energy is given
E5uK1u(^ i j &sisj1uK2u(^ i j &sisj2h( isi . According to the
Gibbs distribution, the energy has the absolute minim
value at the absolute zero temperature. Whenh is small the
minimum energy spin configuration is as shown in Fig. 3~a!
and E5(2uK1u2uK2u)N. Here N is the number of lattice
points. This corresponds to an antiferromagnetic state. Ah
increases enough, the spin configuration changes into a p
magnetic state @Fig. 3~c!# with lower energy
E5(uK1u1uK2u2h)N. The transition takes place when th
energies of the two states become identical
h52(uK1u1uK2u). So we obtainA5 1

2.
The critical line equation obtained by Mu¨ller-Hartmann

and Zittartz@15#,

coshbh5sinh~2buK1u!sinh~2buK2u! ~25!

reduces toh'2kTln212(uK1u1uK2u) in the low-T limit.
For a fewg values we computed critical temperatues a

given magnetic field for the two models. They are listed
Table I. Here we usedK(11g)/2 in place ofK in using Eq.
~16!. Although our formula~16! was derived to fit the data
given in Refs.@20,25,28# for the isotropic Ising antiferro-
magnet, theW-K results are in reasonable agreement w
the MHZ data to the same extent as in the isotropic case

B. Case„ii …: K1>0, K2<0

The Ising partition function on an elementary cycle can
rewritten as

z~T,h!5e2b~K12uK2u!~e4bh1e24bh!14~e2bh1e22bh!

12e22b~K11uK2u!12e2b~K11uK2u!12e22b~K12uK2u!.

~26!

Once again the critical line is given by the zero of the tra
formed partition function,

e2b~K12uK2u!@e4b f ~ uhu!1e24b f ~ uhu!#14@e2b f ~ uhu!1e22b f ~ uhu!#

FIG. 2. Critical temperaturetc(g) of an Ising antiferromagne
on a square lattice: all cases.
ra-

r

a

e

-

22e22b~K11uK2u!22e2b~K11uK2u!12e22b~K12uK2u!50.

~27!

Depending on the relative magnitudes ofK1 anduK2u, Eq.
~27! behaves differently. Let us again define two paramet
K15K and uK2u5gK. Within the first-order approximation
we made a few plots of Eq.~27! in Fig. 4. AsK is increased
hc rises to a maximum valuehm and then decreases to i
final value. In theT→0 limit, we have

Ahc5uK2u. ~28!

Thus it is the negative coupling coefficient that is releva
The two trends, positiveK1 and negativeK2, compete and
give rise to an interesting behavior. The zero-field critic

FIG. 3. Possible antiferromagnetic states atT50 on a square
lattice.
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TABLE I. Critical temperatureskT/K of an anisotropic Ising antiferromagnet on a square lattice.

g50.75 g50.50 g50.25
bh W-K MHZ W-K MHZ W-K MHZ

0.1 1.968 992 1.968 915 1.637 868 1.637 839 1.236 821 1.236 8
0.2 1.957 565 1.957 287 1.637 868 1.628 415 1.230 119 1.230 3
0.5 1.882 829 1.881 375 1.567 310 1.566 882 1.186 308 1.187 6
1.0 1.674 690 1.669 231 1.396 968 1.394 782 1.064 477 1.067 7
2.0 1.243 351 1.231 334 1.044 556 1.038 022 0.812 737 0.815 4
5.0 0.619 114 0.613 794 0.528 839 0.524 837 0.432 318 0.431 2
10. 0.328 576 0.327 309 0.281 609 0.280 532 0.234 255 0.233 4
50. 0.069 083 0.069 043 0.059 214 0.059 180 0.049 345 0.049 3
ra
a

-

ro

nsi-
cted
n
tice

e
r

re
temperaturetc is identical to case~i!; see Fig. 2. As the
temperature decreases the antiferromagnetic phase tole
higher and higher demagnetizing field. However, the dem
netizing is caused also by the positiveK1. The maximumhm
is an almost linear function ofg; see Fig. 5~a!. The location
of the maximumtm rises sharply untilg'0.5 and then ap-
proaches a limiting value,;0.72; see Fig. 5~b!. Since the
zero-field critical temperaturetc is a linearly increasing
function of g, the relative location of the maximum,tm /tc
shifts to the limit 0 asg is increased.

Physicallytm is the temperature at which the antiferro
magnet is most inert against the demagnetizing field.We
therefore see thattm is not necessarily the absolute ze

FIG. 4. Critical lines of an Ising antiferromagnet on a squa
lattice: K1.0 andK2,0.
tes
g-

when the two coupling coefficients have different signs.This
also means that for a given magnetic field two phase tra
tions are possible at two different temperatures, as predi
by Ziman @21# and confirmed by a Monte Carlo simulatio
of an Ising antiferromagnet on a body-centered-cubic lat
@22#.

In order to obtain the approximate form of the critical lin
in theT→0 limit, let us use the first-order approximation fo
f (h) and find the largest terms in Eq.~27!. Since 2uK2u,Ah
in the T→01 limit, the largest terms in Eq.~27! are,

e2b~K12uK2u!e4bAh14e2bAh22e2b~K11uK2u!'0 ~29!

FIG. 5. The most inert points:Ahm(g) andtm(g): K1.0 and
K2,0.
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or

e2b~K12uK2u!e4bAh22e2b~K11uK2u!'0, ~30!

which reduces to

Ah'
kT

4
ln21uK2u. ~31!

The positive slope of the critical line atT50 means that
tmÞ0.

Let us find the constantA from the spin configuration o
the ground state. The energy is given
E52K1(^ i j &sisj1uK2u(^ i j &sisj2h( isi . When h is small
r

a-

n
io
the minimum energy spin configuration is shown in Fig. 3~b!
(K1 is the horizontal link! andE5(2K12uK2u)N. This cor-
responds to an antiferromagnetic state. Ash increases, the
spin configuration changes into a paramagnetic state@Fig.
3~c!# with lower energyE5(2K11uK2u2h)N. The transi-
tion takes place when the energies of the two states bec
identical orh52uK2u. SoA5 1

2 again.

IV. HONEYCOMB LATTICE

The Ising partition function on an elementary cycle of t
honeycomb lattice in magnetic field is
n

z~T,h!5e2b~K11K21K3!~e6bh1e26bh!12~e2bK11e2bK21e2bK3!~e4bh1e24bh!1@2~e2bK11e2bK21e2bK31e22bK1

1e22bK21e22bK3!1e22b~K21K32K1!1e22b~K31K12K2!1e22b~K11K22K3!#~e2bh1e22bh!12e2b~K21K32K1!

12e2b~K31K12K2!12e2b~K11K22K3!14e22bK114e22bK214e22bK312e22b~K11K21K3!. ~32!

There can be three distinct combinations of coupling coefficients, (K1 ,K2 ,K3), for an antiferromagnet. We need to work o
each case separately.

A. Case„i…: K1<0, K2<0, K3<0

Let us rewrite Eq.~32! in terms of magnitudes of coupling coefficients,uKi u:

z~T,h!5e22b~ uK1u1uK2u1uK3u!~e6bh1e26bh!12~e22buK1u1e22buK2u1e22buK3u!~e4bh1e24bh!1@2~e22buK1u1e22buK2u

1e22buK3u1e2buK1u1e2buK2u1e2buK3u!1e2b~ uK2u1uK3u2uK1u!1e2b~ uK3u1uK1u2uK2u!1e2b~ uK1u1uK2u2uK3u!#~e2bh1e22bh!

12e22b~ uK2u1uK3u2uK1u!12e22b~ uK3u1uK1u2uK2u!12e22b~ uK1u1uK2u2uK3u!14e2buK1u14e2buK2u14e2buK3u

12e2b~ uK1u1uK2u1uK3u!. ~33!

Making the transformation we obtain the critical line,

e22b~ uK1u1uK2u1uK3u!@e6b f ~ uhu!1e26b f ~ uhu!#22~e22buK1u1e22buK2u1e22buK3u!@e4b f ~ uhu!1e24b f ~ uhu!#1@2~2e22buK1u2e22buK2u

2e22buK3u1e2buK1u1e2buK2u1e2buK3u!1e2b~ uK2u1uK3u2uK1u!1e2b~ uK3u1uK1u2uK2u!1e2b~ uK1u1uK2u2uK3u!#@e2b f ~ uhu!1e22b f ~ uhu!#

22e22b~ uK2u1uK3u2uK1u!22e22b~ uK3u1uK1u2uK2u!22e22b~ uK1u1uK2u2uK3u!14e2buK1u14e2buK2u14e2buK3u

22e2b~ uK1u1uK2u1uK3u!50. ~34!
s

tion
e as

e

We may assumeuK1u>uK2u>uK3u without loss of gener-
ality. Depending on the relative magnitudes ofuK1u, uK2u,
anduK3u, Eq. ~34! behaves differently. Within the first-orde
approximation, we made a few plots of Eq.~34! for different
combinations of (g2 ,g3) in Fig. 6. We notice a few facts.

~i! The T50 limit of hc depends only on the least neg
tive coupling coefficient,

Ahc52uK3u. ~35!

~ii ! If g25g3, hc monotonically increases to 2g3 asK is
increased.

~iii ! If g2Þg3, hc reaches a maximum at (hm ,tm) and
then decreases to its final value asK is increased.

We made a contour plot of (g2 ,g3 ,tc) in Fig. 7. For a
given value ofg3, tc is a monotonically increasing functio
of g2, and vice versa. As a matter of fact, along any direct
 n

in theg2-g3 plane its profile looks like Fig. 2. The contour
of (g2 ,g3 ,Ahm) are shown in Fig. 8~a!. Along any direction
in the g2-g3 plane its profile looks like Fig. 5~a! and it is
steepest along the directiong25g3. We show the contours
of (g2 ,g3 ,tm) in Fig. 8~b!. Along the directiong25g3 it
does not change at all, but as you go away from this direc
its slope becomes steeper and its profile is a convex curv
in Fig. 2.

In order to obtain the approximate form of the critical lin
in the T→0 limit, let us find the largest terms in Eq.~34! to
the first-order approximation off (h). SinceAh'2uK3u in
the T→01 limit and uK3u is smaller thanuK1u and uK2u, we
obtain

e22b~ uK1u1uK2u1uK3u!e6bAh22e22buK3ue4bAh

1e2b~ uK1u1uK2u2uK3u!e2bAh22e2b~ uK1u1uK2u1uK3u!'0. ~36!
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or, upon discarding smaller terms,

e2b~ uK1u1uK2u2uK3u!e2bAh22e2b~ uK1u1uK2u1uK3u!'0, ~37!

which reduces to

Ah' 1
2 kTln212uK3u. ~38!

The slope of the critical line atT50 is positive, which im-
plies that the most inert temperature is not zero,tmÞ0. The
T→0 limit of Ah depends only on the least negative co
pling coefficient,K3.

In the exceptional case whenK25K3, instead of Eq.~36!,
we have

e22b~ uK1u12uK3u!e6bAh24e22buK3ue4bAh14e2buK1ue2bAh

FIG. 6. Critical lines of an Ising antiferromagnet on a hone
comb lattice:K1,0, K2,0, andK3,0.
-

-

FIG. 7. Critical temperaturetc(g2 ,g3) of an Ising antiferromag-
net on a honeycomb lattice: all cases.

FIG. 8. The most inert points:Ahm(g2 ,g3) and tm(g2 ,g3):
K1,0, K2,0, andK3,0.
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22e2b~ uK1u12uK3u!'0. ~39!

In the T→0 limit, only the last two terms of Eq.~39! are
dominant and thus we have,

Ah'2 1
2 kT ln212uK3u. ~40!

The slope of the critical line atT50 is negative in this case
In order to determine the constantA let us again conside

the spin configuration of the ground state. The ene
is E5uK1u(^ i j &sisj1uK2u(^ i j &sisj1uK3u(^ i j &sisj2h( isi .
Whenh is small, the lowest energy spin configuration is
shown in Fig. 9~a!, andE5(2uK1u2uK2u2uK3u)N/2. This
corresponds to an antiferromagnetic state. Ifh increases
enough, it settles in a paramagnetic state@Fig. 9~d!# with a
lower energyE5(uK1u1uK2u1uK3u22h)N/2. The transi-
tion takes place when the energies of the two states bec
identical and h5uK1u1uK2u1uK3u. Thus we obtain
A52uK3u/(uK1u1uK2u1uK3u)52g3 /(11g21g3). A de-
pends on the ratio of the coupling constants. This yieldsA
5 2

3 in the isotropic case.

B. Case„ii …: K1<0, K2>0, K3>0

Rewriting Eq. ~32! in terms of magnitudes of couplin
coefficients, we obtain the Ising partition function on an
ementary cycle,

z~T,h!5e2b~K21K32uK1u!~e6bh1e26bh!12~e22buK1u1e2bK2

1e2bK3!~e4bh1e24bh!1@2~e2buK1u1e2bK2

1e2bK31e22buK1u1e22bK21e22bK3!

1e22b~ uK1u1K21K3!1e22b~2uK1u1K22K3!

1e22b~2uK1u1K32K2!#~e2bh1e22bh!

12e2b~ uK1u1K21K3!12e2b~2uK1u1K22K3!

12e2b~2uK1u1K32K2!14e2buK1u14e22bK2

14e22bK312e22b~2uK1u1K21K3!. ~41!

Making the transformation we obtain the equation for t
critical line,

e2b~K21K32uK1u!~e6b f ~ uhu!1e26b f ~ uhu!!12~2e22buK1u1e2bK2

1e2bK3!~e4b f ~ uhu!1e24b f ~ uhu!!1@2~e2buK1u1e2bK2

1e2bK32e22buK1u2e22bK22e22bK3!

1e22b~ uK1u1K21K3!1e22b~2uK1u1K22K3!

1e22b~2uK1u1K32K2!#~e2b f ~ uhu!1e22b f ~ uhu!!

22e2b~ uK1u1K21K3!22e2b~2uK1u1K22K3!

22e2b~2uK1u1K32K2!14e2buK1u24e22bK224e22bK3

22e22b~2uK1u1K21K3!50. ~42!

We may assumeK2>K3 without loss of generality. De-
pending on the relative magnitudes ofuK1u, K2, andK3, the
y

s

e

-

behaviors of Eq.~42! are quite different. Let us define thre
parameters,uK1u5K, K25g2K, andK35g3K. We made a
few plots of Eq.~42! for different combinations of (g2 ,g3)
in Fig. 10. We notice a few facts.

~i! The T50 limit of hc is, for all combinations of
(g2 ,g3),

Ahc5min~ 2
3 uK1u,2K3!. ~43!

~ii ! Caseg25g3: asK is increased, ifg3< 1
3, Ahc mono-

tonically increases to 2g3, implying thatAhc→2K3. Other-
wise, hc reaches a maximum and then decreases to its fi

FIG. 9. Possible antiferromagnetic states atT50 on a honey-
comb lattice.
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value, 2
3, implying thatAhc→ 2

3 uK1u. The maximum value of
hc is an increasing function ofg3.

~iii ! Caseg2Þg3: as K is increased, atg25 1
3 or g35 1

3

~implying 2K35 2
3 uK1u), Ahc monotonically increases to

2
3 uK1u. Otherwisehc reaches a maximum and then decreas
to its final value asK is increased. The maximum value o
hc is an increasing function ofg3.

We made a contour plot of (g2 ,g3 ,tc), which is identical
to Fig. 7. The contours of (g2 ,g3 ,Ahm) are shown in Fig.
11~a!. We need to consider only the upper region of t
diagonalg25g3 where the conditiong2>g3 is satisfied. Its
profile is no longer a straight line but a convex curve lik
that of Fig. 2. In the regiong3< 1

3 the contour rises sharply
across the lineg35 const, but hardly changes along the lin
Beyond the lineg35 1

3 it gradually rises. Along the direction
g25const it is steeper than along the diagonal line. T
contours of (g2 ,g3 ,tm) are shown in Fig. 11~b!. There are
valleys alongg35 1

3 and g25g3< 1
3, where the maximum

occurs only attm50. As you go away from these two line
the location of the maximum shifts towards the zero-fie
critical temperature.

In order to obtain the approximate form of the critical lin
in the T→0 limit, let us find the largest terms in Eq.~42!
within the first-order approximation. Let us consider th
case,g2Þg3 first:

e2b~K21K32uK1u!e6bAh12e2bK2e4bAh1e2b~ uK1u1K22K3!e2bAh

FIG. 10. Critical lines of an Ising antiferromagnet on a hone
comb lattice:K1,0, K2.0, andK3.0.
s

.

e

22e2b~ uK1u1K21K3!'0. ~44!

There are two cases that we have to consider:~a! g3, 1
3 and

~b! g3. 1
3.

Case (ii-a):g3< 1
3

SinceAh'2K3 in theT→01 limit, the two largest terms
in Eq. ~44! are,

e2b~ uK1u1K22K3!e2bAh22e2b~ uK1u1K21K3!'0, ~45!

which reduces to

Ah' 1
2 kT ln212K3 . ~46!

Again the slope of the critical line atT50 is positive. The
T→0 limit of Ah depends only on the smaller of the tw
positive coupling coefficient,K3.

-

FIG. 11. The most inert points:Ahm(g2 ,g3) and tm(g2 ,g3):
K1,0, K2.0, andK3.0.
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Case (ii-b):g3> 1
3

Since Ah' 2
3 uK1u in the T→01 limit, the two largest

terms in Eq.~44! are

e2b~K21K32uK1u!e6bAh22e2b~ uK1u1K21K3!'0, ~47!

which reduces to

Ah' 1
6 kT ln21 2

3 uK1u. ~48!

Again the slope of the critical line atT50 is positive. The
T→0 limit of Ah depends only on the negative couplin
coefficient,K1.

In the exceptional case wheng2.g3 andg35 1
3, Eq. ~44!

can be rewritten as

e2b[K22~2/3!uK1u]e6bAh12e2bK2e4bAh1e2b[K21~2/3!uK1u]e2bAh

22e2b[K21~4/3!uK1u]'0. ~49!

All four terms of Eq. ~49! are equally large. Assuming

exp(2bAh)5a1exp(43buK1u), we obtain

Ah' 1
2 kT lna11 2

3 uK1u'20.1814 75kT12K3 , ~50!

wherea15 1
3 @221(1/c1)1c1# with c15(281A783)1/3.

In the case wheng25g3, instead of Eq.~44!, we have

e2b~2K32uK1u!e6bAh14e2bK3e4bAh14e2buK1ue2bAh

22e2b~ uK1u12K3!'0. ~51!

Case (ii-c):g25g3< 1
3

Only the last two terms of Eq.~51! are dominant, and we
have

Ah'2 1
2 kT ln212K3 . ~52!

Case (ii-d):g25g3> 1
3

Only the first and last terms of Eq.~51! are dominant, and
we have Eqs.~47! and ~48!. That is,

Ah' 1
6 kT ln21 2

3 uK1u.

However, if g25g35 1
3, all four terms of Eq.~51! are

equally large and we have

Ah' 1
2 kT lna212K3'20.511 793kT12K3 , ~53!

wherea25 1
3 @241(4/c2)1c2#, with c25(351A1161)1/3.

Let us findA from the spin configuration of the groun
state. The energy is E5uK1u(^ i j &sisj2K2(^ i j &sisj
2K3(^ i j &sisj2h( isi . Whenh is small, the spin configura
tion is as shown in Fig. 9~b! (K1 is the vertical link.! and
E5(2uK1u2K22K3)N/2. This corresponds to an antiferro
magnetic state. Ash increases, the spin configuratio
changes into a paramagnetic state@Fig. 9~d!#, with a lower
energy E5(uK1u2K22K322h)N/2. The transition takes
place when the energies of the two states become ident
or h5uK1u. We therefore obtainA52K3 /uK1u52g3 for the
cases~ii-a! and~ii-c! andA5 2

3 for cases~ii-b! and~ii-d! and
the two exceptional cases.
al,

C. Case„iii …: K1>0, K2<0, K3<0

Rewriting the Ising partition function on an elementa
cycle in terms of magnitudes of coupling coefficients, w
obtain

z~T,h!5e2b~K12uK2u2uK3u!~e6bh1e26bh!12~e2bK1

1e22buK2u1e22buK3u!~e4bh1e24bh!1@2~e2bK1

1e2buK2u1e2buK3u1e22bK11e22buK2u1e22buK3u!

1e2b~K11uK2u1uK3u!1e22b~K11uK2u2uK3u!

1e22b~K12uK2u1uK3u!#~e2bh1e22bh!

12e22b~K11uK2u1uK3u!12e2b~K11uK2u2uK3u!

12e2b~K12uK2u1uK3u!14e22bK114e2buK2u

14e2buK3u12e22b~K12uK2u2uK3u!. ~54!

Making the transformation we obtain the equation for t
critical line,

2e2b~K12uK2u2uK3u!~e6b f ~ uhu!1e26b f ~ uhu!!12~e2bK1

2e22buK2u2e22buK3u!~e4b f ~ uhu!1e24b f ~ uhu!!1@2~e2bK1

1e2buK2u1e2buK3u2e22bK12e22buK2u2e22buK3u!

2e2b~K11uK2u1uK3u!2e22b~K11uK2u2uK3u!

2e22b~K12uK2u1uK3u!#~e2b f ~ uhu!1e22b f ~ uhu!!

12e22b~K11uK2u1uK3u!12e2b~K11uK2u2uK3u!

12e2b~K12uK2u1uK3u!24e22bK114e2buK2u14e2buK3u

12e22b~K12uK2u2uK3u!50. ~55!

Let us assumeuK2u>uK3u without loss of generality. Let
us again define three parameters,K15K, uK2u5g2K, and
uK3u5g3K. We made a few plots of Eq.~55! for different
combinations of (g2 ,g3). As we see in Fig. 12, the critica
line is interesting and complicated in this case. The bulge
the right means that the antiferromagnetic phase transitio
possible above the zero-field critical temperature. As
magnetic-field strength is increased, the critical tempera
rises, whereas it decreases in cases~i! and ~ii !. But as the
field is increased furthertc(h) eventually begins to fall
again. This type of behavior was conjectured for a fcc latt
@14# and found in the antiferromagnetic triangular Isin
model@16,23#. In the bulge region the system begins from
disordered state in the zero-field limit. As you increase
field strength the system enters into an antiferromagn
phase and then into a paramagnetic phase.

The overall behavior of the critical line is as follows.
~i! The T→0 limit of hc is, for all combinations of

(g2 ,g3),

Ahc5uK2u1uK3u. ~56!

~ii ! Caseg25g3: below g2'0.6725 the line starts mov
ing to the up-left direction towards the end point as in t
cases~i! and ~ii !. Above g2'0.6725 the line veers to the
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up-right direction, then turns to left, and rises monotonically
up to its final value in the limitT50.

~iii ! Caseg2Þg3: the line has both behaviors as in the
g25g3 case but it is not easy to make compact description
It veers up-right and turns left, or moves up-left from the
outset, depending on the values of (g2 ,g3). It is best illus-
trated in Fig. 13, where the values ofAhb and tb at the
turning points are shown.

We made contour plots of (g2 ,g3 ,tc), which is again
identical to Fig. 7. The contours of (g2 ,g3 ,Ahb) are shown
in Fig. 13~a!. Along any direction in theg2-g3 plane its
profile is practically linear with the same slope. The contour
of (g2 ,g3 ,tb) are shown in Fig. 13~b!. Along the direction
g25g3 it increases very slowly but as you go away from this
direction its slope becomes steeper and its profile is close
linear. The bulge appears when the point (g2 ,g3) falls out-
side the nearly circular contour with the valuetb51.

Since Ah'uK2u1uK3u in the T→01 limit, the largest
terms in Eq.~55! are,

2e2b~K12uK2u2uK3u!e6bAh12e2bK1e4bAh

2e2b~K11uK2u1uK3u!e2bAh12e2b~K11uK2u2uK3u!'0.

~57!

or, upon discarding the last term and performing some alg
braic manipulations,

FIG. 12. Critical lines of an Ising antiferromagnet on a honey
comb lattice:K1.0, K2,0, andK3,0.
s.

s

to

e-

e2Ah'e2b~ uK2u1uK3u!, ~58!

which reduces to

Ah'~ uK2u1uK3u!. ~59!

The slope of the critical line atT50 is zero. TheT→0
limit of Ah depends only on the negative coupling coef
cients,K2 andK3.

Let us find A from the ground-state spin configuratio
The energy is E52K1(^ i j &sisj1uK2u(^ i j &sisj
1uK3u(^ i j &sisj2h( isi . Whenh is small, the lowest-energy
spin configuration is as shown in Fig. 9~c! (K1 is the vertical
link.! and E5(2K12uK2u2uK3u)N/2. This corresponds to
an antiferromagnetic state. Ash increases, the spin configu
ration changes into a paramagnetic state@Fig. 9~d!# with a
lower energyE5(2K11uK2u1uK3u22h)N/2. The transi-
tion takes place when the energies of the two states bec
identical orh5uK2u1uK3u. Thus we obtainA51.

-

FIG. 13. Bulge locations,Ahb(g2 ,g3) and tb(g2 ,g3): K1.0,
K2,0, andK3,0.
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V. CONCLUSION

In this paper we extended our approach introduced in R
@19# to an anisotropic Ising antiferromagnet on square a
honeycomb lattices with some or all negative interact
strengths. We proved that the exact zero-field critical con
tions of an Ising antiferromagnet are determined by the ze
of the pseudopartition function on an elementary cycle. U
ing the fact that the critical point of an Ising antiferromagn
corresponds to the singularity of its free energy and the G
fiths’ smoothness postulate, we extended our previous c
jecture for the case with nonzero magnetic field and obtai
the critical lines of an Ising antiferromagnet on these lattic
Our results reasonably agree with the formula obtained
Müller-Hartmann and Zittartz. It will be useful to check ou
results for the honeycomb lattice by different means such
Monte Carlo simulation or series analysis.

The critical lines are depicted for each different combin
tion of the coupling coefficients. We also made plots of t
zero-field critical temperatures of an Ising antiferromag
on square and honeycomb lattices as functions of the ra
of the coupling coefficients. The low-T limit of the critical
line is obtained for each case from the ground-state s
cs
f.
d
n
i-
s
-
t
f-
n-
d

s.
y

s

-
e
t

os

in

configurations. We observed two interesting phenomena m
occur. In the cases of a square lattice with (K1.0, K2,0)
and a honeycomb lattice with (K1,0, K2,0, K3,0) and
(K1,0, K2.0, K3.0), the critical line has a positive slop
in the zeroT limit and thus has a maximum at a temperatu
tmÞ0, except for some rare cases. This means that fo
given magnetic field phase transitions are possible at
different temperatures as disputed in the past and that
antiferromagnet is not necessarily most inert against dem
netizing field at the absolute zero. We have made plots of
temperaturestm where the antiferromagnetic system is mo
inert and the critical fieldsAhm at tm as functions of the
ratios of the coupling coefficients. In the case of a hon
comb lattice with (K1.0, K2,0, K3,0) a field-driven an-
tiferromagnetic phase transition is possible. We made p
of the maximum temperaturestb where the phase transitio
is possible and the critical fieldsAhb at tb as functions of the
ratios of the coupling coefficients.
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