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Critical line of an anisotropic Ising antiferromagnet on square and honeycomb lattices
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Using the approach that we developed recently, we find the critical line of an anisotropic Ising antiferro-
magnet on two-dimensional square and honeycomb lattices. We extend our previous lemma and conjecture to
be useful in the antiferromagnetic system. We find two interesting behavigré&n antiferromagnet is not
necessarily most inert at the absolute z¢2d The field-driven antiferromagnetic phase transition is possible in
the honeycomb latticd S1063-651X97)12409-6

PACS numbg(s): 05.50:+q, 64.60.Cn, 75.10.Hk, 75.40.Cx

[. INTRODUCTION proach mapping the Ising model into the vertex model and
considered the critical lines as the invariant of some trans-
One of the longstanding problems in statistical physics iformation.
the Ising model in nonzero magnetic fieldxcept at one Recently we introduced a new approach considering zeros
dimension [1,2]. We do not have the precise knowledge of of the Ising partition function on an elementary cycle of
its thermodynamic properties. Particular interest has focusesquare, triangular and honeycomb lattices, and determined
on its critical properties. Although no exact solutions exist,the critical line of an isotropic Ising antiferromagnet on
some exact results have been estabished. The most famogguare and honeycomb latticgts]. In this paper we extend
among these results is the Yang-Lee circle theof@j  this approach to obtain the critical lines of an anisotropic
which states that the roots of the partition function of anlsing antiferromagnet on square and honeycomb lattices. We
Ising ferromagnet in the complex fugacity plane are distrib-compare our results with those obtained bylluHartmann
uted on a unit circle. In the thermodynamic limit the root and Zittartz[15] for an anisotropic antiferromagnet on a
distribution approaches the positive real axis and gives thequare lattice. We confirm that the limiting behavior of the
critical point. The Yang-Lee circle theorem asserts that theritical line in the lowT limit agrees reasonably with the
critical line of an Ising antiferromagnet is locatedhat 0 for ~ €xisting results found by othef45,17,2Q with slight differ-
T<T.. ences. We find two interesting behaviors. In the cases of a
The circle theorem was so useful that there were manyquare lattice withK;>0, K,<0) and a honeycomb lattice
attempts to extend it. The theorem was extended to the cas@éth (K1<0, K,<0, K3<0) and K;<0, K,>0, K3>0),
of higher-order Ising moddW], Ising models with multiple the critical line has a maximum at a temperatdrg+0,
spin interactions, the quantum Heisenberg mdda) the  which means that for a given magnetic field two phase tran-
classicalXY and Heisenberg modé6], and some continu- Sitions are possible as predicted by Zimii] and con-
ous spin system§7]. Ruelle [8] extended the theorem to firmed by a Monte Carlo simulation of an Ising antiferro-
noncircular regions. Leg9] presented a generalized circle magnet on a body-centered cubic lattj@2]. It also means
theorem to the asymmetric transitions and further to a conthat the antiferromagnet is not necessarily most inert against
tinuum system. demagnetizing field at the absolute zero. In the case of a
For a lattice model in the absence of magnetic field, it ishoneycomb lattice with K;>0, K,<0, K3<0) a field-
convenient to consider the zeros of the canonical partitiorfiriven antiferromagnetic phase transition is possible as pre-
function in the complex temperature plane. FishH&0] dicted in an antiferromagnet on a triangular latti¢é,23].
proved that for the square lattice Ising model, in the thermo- The paper is organized as follows. In Sec. Il we explain
dynamic limit, the zeros are distributed on circles and theour basic approach used in RgL9], and extend the lemma
logarithmic singularity occurs as a consequence of the zergonjecture. In Sec. Ill we consider the square lattice. We
distribution. However, for other lattice Ising models, the zeropresent the critical lines, critical temperatures, dpd We
distributions are complicategd1,12. The zero distributions derive the lowT limit of the critical line, and give a heuristic
of Potts models were studied ja3]. explanation for the zero temperature critical field. In Sec. IV
However, for an Ising antiferromagnet in a nonzero mag-we repeat the procedure for the honeycomb lattice.
netic field, no such theorem exists, and the situation is much
more complicated. The traditional mean-field methods Il. BASIC APPROACH
cannot give reasonable results. The series expansion method - ) ) ) o
was widely used to study the properties of the Ising model in The partition function of an Ising model in magnetic field
a nonzero field 14]. Miller-Hartmann and Zittartf15] ob- IS given by
tained a good approximation of the critical line of an Ising
antiferromagnet on a square lattice by considering an _inter- Z=E ex;{ﬁ( E KijSiSj+h2 Si”’ (1)
face free energy. Later Lin and W[L6] extended this (sl i i
method to the anisotropic Ising antiferromagnet on a trian-
gular lattice. Wu and co-workeffd 7,18 introduced an ap- wheres;=*1 andKj; is the interaction strength. We con-
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sider the simplest case that the s(ij) runs over the pairs Ising antiferromagnet on the square and honeycomb lattices,
of nearest neighhbors on the lattick&g;>0 corresponds to the zero-field critical condition§2] were obtained: square,

the ferromagnetic case, aid;<O0 to the antiferromagnetic {1{,+ {1+ {,=1; and honeycomb, {1453
case. The Ising partition function on each elementary cycle-{1{,— {2{3—{3{1— {1— {>,— {3+ 1=0, where
of the triangular, square, and honeycomb lattices are g’jEexp(—2,8|Kj|). Thus the critical temperatures of an Ising

ferromagnet and an Ising antiferromagnet on the same kind
of lattice, square or honeycomb, must be identical in the
absence of magnetic field. Accordingly our lemma 1 is ex-

7= 2[6’8(K1+ Ka+Kg) o eﬁ(*K1*K2+K3) + eﬁ(* Ko—Kz+Ky)

B(—Kaz—K{+K>)
Te M @) tended to:
_ _ _ Lemma 2:Let the Ising partition function on an elemen-
= 2B(K1+K3) 4 a2B(K1—Kp) 2B(K1=K3) )
Ze=2[e® e et e e P tary cycle of the square and honeycomb lattices be
+e 2BK1tKa) 4 g, 3y z=zT,h=0). Make a transformation expéiK;|)

—i exp(28|K||), and thusz—z'. Then the critical tempera-
2= 2[€2PK1HKatKa) | 4e2BK1 4 4e2BK2 4 4@28Ka 4 4o~ 26K: tures of an Ising antiferromagnet on square and honeycomb
lattices in the absence of magnetic field are given by the real

+ 4e_2BK2+ 4e™ ZﬁK?,—{- eZB(Kl+K2_K3) + ezﬁ(K2+K3_ K1) so'utions sz’ =0.
+ e2B(Ks K1~ Ko) 4 o~ 2B(Ky+Ko—Ka) 4 g~ 26(Kp+Kg—Ky) However, our lemma 1 cannot be extended for a triangu-
lar lattice due to lack of symmetry.
+ e 2B(Kg+Ky—Kp) 4 o= 2B(Ky +Kat+Kg)] (4) In 1970 Griﬁiths[24,23.proposed the smoothness postu-
late. He reasoned that since on the boundary between the
whereK; are the interaction strengths. antiferromagnetic and paramagnetic phases there &spro

Our approach was |n5p|red by the fo||0W|ng observation. ori reason to smgle out the partlcular p0|nt Correspondlng to
Lemma 1:Let the Ising partition function on an elemen- Z€ro field, it is reasonable to assume that the singularity in
tary cycle of the square, triangular, and honeycomb latticeghe free energy does not change its basic character along the
be z=z(T,h=0). Make a transformation expgK) boundary. This postulate was verified by Rapaport and
—i exp(28K;) and thusz—z'. Then the critical tempera- Domb([25].
tures of an Ismg ferromagnet on square, triangular and hon- We use this postulate and take lemma 2 as the boundary
eycomb lattices in the absence of magnetic field are given bgondition for h=0. Since at the critical point,
the real solutions of’ =0. (&h/aM)TC=O, it follows that along the critical line
The transformed partition functions are (6h/oM)+=0 [26]. For a square lattice Ising model, the

spontaneous magnetization is given[2y]
zl :2i3/2[e,8(K1+K2+K3)_eB(fK17K2+K3)_eB(7K27K3+ Kq)

S 251 2§2 211/8
_ aB(—Kg—K1+Kp) =0)=|1-|—2+—>
ef T ] M(T<T°’h‘°)‘{l (1—5121—£22H
=2i%{10583) VAL {18~ Lola— {380), 5
~[2'(T,h=0)]"8 8

Zé =2[— @2B(K1+K2) 1 @2B(K1=K3) 4 o= 2B8(K1=Ky)

According to Griffiths we assume that in a nonzero magnetic

— @ 2B(K1+Ky) . " . N
e ATl 1 a) field, near the critical line, the magnetization strength take

=2(4,8) " (L1+ 8)%— (1— £18)?], (6) the same functional form as the case liet 0,
z{ = 2i[ — e?P(K1+KatKa) 4 428K 4 428Kz 4 4028Ks M(T<T¢,h)=g(T,n[¥(T,h)]"E 9
— Qe 2PK1_ g~ 2BKa_ 4o~ 28Kz @2B(K1+Ky—Ky) whereg(T,h) andy(T,h) are nonsingular analytic functions

B B B B of T andh. ¥(T,h) is related to the partition function on an
+ (K2 Ka TR 4 @2PGs T TIG) — @ 2R TG elementary cycle, withy(T,h=0)=z'(T,h=0). Thus

e 2B(KoKa—Ky) _ g 2B(Kg K1 —Ky) | o= 2B(Ky K +Kg)]
ﬂ [ (T, h)]1/8+ [ (T,h)]~"8 (10
=—2i(£18283) (1= 8180— Lals— {301)? dh &h Y 8(9h Y '

— (L1t Lo+ L5~ 2]. 7
(Gt fa= Lalala)] @ Sinceg(T,h), v(T,h) and their derivatives with respect o

where {j=exp(~2pK;). Indeed, it is easy to verify that the do not approach inf_inity for arbitraty, along the critical I_ine
real solutions oz’ =0 give the exact zero-field critical tem- (¢h/dM)7=0 requires y(T,h)=0. Therefore we might
peratures of an Ising ferromagnet: squag,+ {1+ {,=1; plau3|bly extend lemma 2 to the case of nonzero magnetic
triangular, {10+ {3+ {3¢1=1; and  honeycomb, field. . . .
(1lola—E1lo— Cola—L3l1— (1— 52 {3+1=0. Conjecture:Let the Ising partition function on an elemen-

The Ising partition function on an elementary cycle of tary cycle of square and honeycomb latticeszibez(T,h).
square and honeycomb lattices, E(®.and (4), are invari- Make a transformation
ant under the symmetry operatiolg,— — K; . Equationg6) _ . '
and(7) have the same symmetry modulo overall sign. For an pj=e?Kil—p/=ie??Kland [h|—f(|h]). (1D
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Thus z—2z' with the boundary condition$(0)=0. Here 15
f(h) is assumed to be a real and analytic functiomnoThen
the critical line is given byy(T,h)=z'=0.

Let us recall how the conjecture was used to find the
critical line of an isotropic Ising antiferromagnet on square
and honeycomb latticd4.9]. The Ising partition function on
an elementary cycle of square and honeycomb lattices, in the
isotropic case, can be written as

Ah/K

z=\\ N, (12)

whereX . = ePX[costBh=(sinifBh+e *¥)¥2] andN is the
number of the edges of an elementary cycle. Making the 1K
transformation gives the critical line of an isotropic Ising

antiferromagnet on square and honeycomb lattices, which is

. FIG. 1. Critical line of an Ising antiferromagnet on a square
e*#Kl=e*¥lKlcosif pf(|n]) +sinfPAf(Ih]). (13 jattice:K,<0 andK,<0.

Irc])etir;egif\ur;t]—%g(/jer approximationf,(h) =2h/q, the critical 2(T 1) = e~ 28Kl +IKaD)(8h 4 o=48h) 4 4280 1 g~ 26N)
(q-2) 1+ 2e2B(Ky|=IKaD) 41 9a=2B(IKq|=[K2])
m(q—

4q

28h\  _(2ph
cosﬁ( a )+S|nhz<T, 4 2e2B(IK|+[Kyl). (18)
(14

e4BIK| = co

_ o Making the transformation, exp@Ki|)—iexp(28/K4|),
whereq is the coordination number. Here we used the for-exp(gg|K2|)_>i exp(28K,|) and |h|—f(|h|), we obtain the
mula critical line as the zero of

e‘250K=tar{ w(q—Z)}. 15 — e 2B(IKyl + KD g#Bf(Ihl) 4 g~ 48NN 4 4 g261(IND

49 128100 4. pe2BK1I-IK2l) 4 928Kl Kz

To the third-order approximation, 228Kl Kol — (19
f(Ih])=Alh|+B|h|%/|K]|+C|h[*/|K]%. (16) e

The zero-field limit of Eq(19) reduces to the Onsagef’29]
In our previous work[19] we used a set of coefficients, formula for the critical temperature,
A=0.542 578, B=0.003487 3, and C=-0.00353295 ) _
for a square lattice to fit the data in Ref§l5,2§ 1=sinh(28|K4|)sin(28|K,]). (20)
and A=0.69151507, B=-0.003105 195, and
C=—0.001 725 869 for a honeycomb lattice to fit the data in
Ref. [17].

In the following discussions we will use a popular nota-
tion for h andT: »=h/K and r=kT/K.  and r are dimen-
sionless quantities measuring the magnetic field and terrf]-1
perature.

We may assuméK,|=|K,| without loss of generality.
Let us define two parameteif;| =K and|K,| = yK. Using
the first-order approximatiorf,(h)=~Ah, we made a sample
plot of Eq.(19) in Fig. 1. As the temperature decreases the
ntiferromagnetic phase of the system tolerates higher and
igher demagnetizing field. As is increasedy, rises mono-
tonically to the maximum value. At thE— 0 limit, we have

. SQUARE LATTICE Ah.=|K4|+ K. (21)

The Ising partition function on an elementary cycle of the

square lattice in magnetic field is given by The zero field critical temperature, is an increasing func-

tion of y; see Fig. 2. Thus as the coupling strengih|
z(T,h) = e?PK1TK2) (BN 4 @=4BN) 1 4 (2PNt @~ 26N) increases, the onset of antiferromagnetism occurs at higher
and higher temperature.
Let us obtain the approximate form of the critical line in
(17) the T—0 limit. Since within the first-order approximation
(IK1|+|K5])=~Ah in the T—0, limit, the largest terms in
There can be two distinct combinations of coupling coef-Eq. (19) are
ficients, K;,K,), for an anisotropic antiferromagnet. We
need to work on each case separately.

+2%(K17K2) 1 D 28(K17Ko) 4 p@=2B(K1+Ky),

— @ 2B(IKq|+[Kal) g4BAh L ga2BAh _ 9a2B(IKy|+IKa) < .
(22)
A. Case(i): K;<0, K,<0

The Ising partition functior(17) of the square lattice can
be rewritten as e2BAN~ (2 — \[2)e2AKil+ KD (23

2BAN

Solving Eq.(22) for e“*~", we obtain
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(a) configuration A

1/K.

0 0.5 1 1.5 2
Y

FIG. 2. Critical temperature,(y) of an Ising antiferromagnet
on a square lattice: all cases.

(b) configuration B
which reduces to

+
Ah%——lnT+(|K1|+|K2|). (24

The constantA is related to the spin configuration
of the ground state. The energy is given by
E=[Kyq|2ij)sisj+1Ko|2(ijysisj—hZis;. According to the
Gibbs distribution, the energy has the absolute minimum
value at the absolute zero temperature. Whea small the
minimum energy spin configuration is as shown in Figp)3
and E=(—|K|—|K5|)N. Here N is the number of lattice
points. This corresponds to an antiferromagnetic stateh As
increases enough, the spin configuration changes into a para- (C) configuration C
magnetic state [Fig. 3(c)] with lower energy
E=(|K4|+|K5|—h)N. The transition takes place when the

energies of the two states become identical or C\KV\ ~ f)
h=2(|K,|+|K5,|). So we obtaimrA= 3. < ¥ F

The critical line equation obtained by Mer-Hartmann E\ oo
and Zittartz[15], 2
: . N D DA

coshBh=sinh(28|K|)sinh(28|K,|) (25 9

reduces tch~ —kTIn2+2(Ky|+|Ky]) in the low-T limit. Qe D)

For a fewy values we computed critical temperatues at a
given magnetic field for the two models. They are listed in
Table I. Here we usel (1+ vy)/2 in place ofK in using Eg.
(16). Although our formula(16) was derived to fit the data
given in Refs.[20,25,28 for the isotropic Ising antiferro-
magnet, theW-K results are in reasonable agreement with

FIG. 3. Possible antiferromagnetic statesTatO on a square
lattice.

— 2@ 2B(Ky+[Ka|) _ 9a2B(K1+[Ka]) 1 0a=2B(K1~[Ka)) = .

the MHZ data to the same extent as in the isotropic case. (27
B. Case(ii): K;>0, K,<0 Depending on the relative magnitudes<of and|K,|, Eq.
The Ising partition function on an elementary cycle can bel27) behaves differently. Let us again define two parameters,
rewritten as K;=K and|K,|=yK. Within the first-order approximation,
we made a few plots of Eq27) in Fig. 4. AsK is increased
Z(T,h) = e2AKim[KaD (g4Bh | g =4BN) 1 4(g2BN 4 g=25N) 7. rises to a maximum valug,, and then decreases to its

+ 20~ 28K +|KaD) | 92B(K1+[KaD) 4 9~ 26(K1~[Kol). final value. In theT—0 limit, we have

(26) Ah.=|K,|. (28)

Once again the critical line is given by the zero of the trans-

formed partition function, Thus it is the negative coupling coefficient that is relevant.
The two trends, positiv&K; and negativek,, compete and

e2B(K1=[Ka[ 4Bt (D) 4 @=4B1(IN) ] 4 41 e2B1(IND) 4 g=2B1(IND] give rise to an interesting behavior. The zero-field critical
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TABLE I. Critical temperature&T/K of an anisotropic Ising antiferromagnet on a square lattice.

y=0.75 y=0.50 y=0.25

gh W-K MHZ W-K MHZ W-K MHZ

0.1 1.968 992 1.968 915 1.637 868 1.637 839 1.236 821 1.236 873
0.2 1.957 565 1.957 287 1.637 868 1.628 415 1.230 119 1.230 335
0.5 1.882 829 1.881 375 1.567 310 1.566 882 1.186 308 1.187 614
1.0 1.674 690 1.669 231 1.396 968 1.394 782 1.064 477 1.067 701
2.0 1.243 351 1.231 334 1.044 556 1.038 022 0.812 737 0.815 407
5.0 0.619 114 0.613 794 0.528 839 0.524 837 0.432 318 0.431 267
10. 0.328 576 0.327 309 0.281 609 0.280 532 0.234 255 0.233 491
50. 0.069 083 0.069 043 0.059 214 0.059 180 0.049 345 0.049 316

temperaturer, is identical to casdi); see Fig. 2. As the when the two coupling coefficients have different sigimss

temperature decreases the antiferromagnetic phase toleratdso means that for a given magnetic field two phase transi-

higher and higher demagnetizing field. However, the demagtions are possible at two different temperatures, as predicted

netizing is caused also by the positig. The maximumz,, by Ziman[21] and confirmed by a Monte Carlo simulation

is an almost linear function of; see Fig. §). The location  of an Ising antiferromagnet on a body-centered-cubic lattice

of the maximumr, rises sharply untity~0.5 and then ap- [22].

proaches a limiting value;-0.72; see Fig. ®). Since the In order to obtain the approximate form of the critical line

zero-field critical temperature; is a linearly increasing intheT—0 limit, let us use the first-order approximation for

function of y, the relative location of the maximum,,/7.  f(h) and find the largest terms in E@®7). Since 2K,|<Ah

shifts to the limit O asy is increased.
Physically 7, is the temperature at which the antiferro-

magnet is most inert against the demagnetizing figle:

therefore see that,, is not necessarily the absolute zero e2B(K1~[Kal)g4BAh | ge2BAN_ 2e2B(Ki+[Ka <0 (29)

0.2

0.25

0.5
1K

0.75

AhK

1K

in the T—0, limit, the largest terms in Eq27) are,

1.5

Ahpn/K

0.5

o
(=]
o
g
—_
[6)]
N

0.7

0.6

1/Kem

05}

0.4

(=)
o
o
— |
—_
o
n

FIG. 4. Critical lines of an Ising antiferromagnet on a square FIG. 5. The most inert pointAn,(y) and 7,(y): K;>0 and
lattice: K;>0 andK,<0.

K,<O0.
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or the minimum energy spin configuration is shown in Fif)3

(K4 is the horizontal linkandE=(—K;—|K5|)N. This cor-
responds to an antiferromagnetic state.Aicreases, the
which reduces to spin configuration changes into a paramagnetic dtaig.

3(c)] with lower energyE=(—K;+|K,|—h)N. The transi-

tion takes place when the energies of the two states become
identical orh=2|K,|. SoA=3 again.

@2B(K1~[Kal)g4pAh_ 902B(K1+[Kal) < (30

KT
Ah=~ =2+ |K,). (31

The positive slope of the critical line &i=0 means that
Tm7# 0.

Let us find the constarA from the spin configuration of  The Ising partition function on an elementary cycle of the
the ground state. The energy is given bypgoneycomb lattice in magnetic field is
E=—K Zijsisj+|Ko|Zijysisj—hZis;. When h is small

IV. HONEYCOMB LATTICE

Z(T,h):ezﬁ(Kl+K2+K3)(e6Bh+e_6ﬁh)+2(92BK1+eZﬁK2+ezﬁK3)(e4Bh+e_4’Bh)+[2(92BK1+92BK2+eZBK3+e_2BK1
+ e 2PKa 4 @7 2BKg) @7 2B(K2FKg—Ky) 4 @7 28(Kg Ky~ Kp) | @~ 2B(K1+Kp=K3) (@28 + @7 28N)  p@2B(KaFKg=Ky)

+2e2B(KgtK1-Kp) | 9a2B(K1+Ka—K3) | ga=28K1 | 4o~ 28Kz 4 fo~2BK34 2a~2B(K1+Ka+Kg) (32)

There can be three distinct combinations of coupling coefficiekts,K,,K3), for an antiferromagnet. We need to work on
each case separately.

A. Case(i): K;<0, K,<0, K3<0
Let us rewrite Eq(32) in terms of magnitudes of coupling coefficient;|:
2(T,h) = e 2BUKil*+IKal +|K3)) (8B 1 @=6BN) | D (@~ 2AIKil 4 @~ 2BIK2l 4 @~ 2BIK3ly (4B 1 @=4BN) 1 [2(e™ 2BIKal 4 @~ 26IK,
+ e 2BIK3| 4 @2BIK1| y @2BIK;| 4 @2BIK3ly 1 @2B(IKal +[Kg|—[Kal) 4 @2B(IKal+ (Kl —[Ka]) 1 g2B(IK1[+[Kal~[K3)](@28h 4 o= 28N)
+2e 2B(Kal + K3l = K1) 4 0= 2B(Kal+IK1|=IKa) 4 2a=2B(IK1|+ Kol =IK3D) 1 421Kl 4 40281K2l 4 4028IK3l
1+ 2a2B(Kq|+[Ka|+[Kg]) (33)
Making the transformation we obtain the critical line,
e 2B(Kal Kzl +IKsh g8B1(IND 1 g =651 ()] — p( g~ 26IK1l 4 = 26IKal 1 g=26IKsly[ g4BT(IND) 1 g=4B1(ND] [ 2( — @~ 26IK1l — g=26lK2l
— e 2BIKsl 1 g2BIK1| 4 @2BIKo| y @2BIK3ly 1 @2B(IKal+ K3l ~[Kal) - @2B(K3l+ K|~ Kal) 1 g2B(IKa[+[Ka|=|K3)) 7 @2Bf (M) 4 =251 (N
— 2@~ 2B(IKa|+IK3|=IK1]) _ 9g=2B(IKa|+[K1|=[Ka]) _ 9a=2B(K1|+[K2l=|K3l) 4 4a2BIK1l 4 4a2BIK2l 1 4a2BIK3l

— 2e2B(Ky|+IKal +IK3)) = . (34

We may assumiK ;|=|K,|=|K;| without loss of gener- in the y,-y; plane its profile looks like Fig. 2. The contours
ality. Depending on the relative magnitudes |&f;|, |K,|,  of (y.,v3,An,) are shown in Fig. &). Along any direction
and|Kj;|, Eq. (34) behaves differently. Within the first-order in the y,-y; plane its profile looks like Fig. @ and it is
approximation, we made a few plots of E@4) for different  steepest along the directiop,= y3;. We show the contours
combinations of §,,y3) in Fig. 6. We notice a few facts.  of (y,,ys,7) In Fig. 8b). Along the directiony,=y; it

(i) The T=0 limit of 7. depends only on the least nega- does not change at all, but as you go away from this direction

tive coupling coefficient, its slope becomes steeper and its profile is a convex curve as
in Fig. 2.
Ah.=2|Kj|. (35 In order to obtain the approximate form of the critical line

in the T—0 limit, let us find the largest terms in E@4) to
(i) If y,= 73, 7. monotonically increases t0)2 asK is  the first-order approximation of(h). Since Ah~2|K3| in
increased. the T— 0. limit and |K3| is smaller thanK,| and|K,|, we
(iii) If y,# vy3, ;. reaches a maximum atpf,,7,) and  obtain
then decreases to its final value lads increased.
We made a contour plot ofyg,ys,7c) in Fig. 7. FOor a  o—28(IKy|+|Kyl+[K3l) g6BAN _ 9 —28|Kg| g4BAN
given value ofys, 7. is a monotonically increasing function
of y,, and vice versa. As a matter of fact, along any direction ~ +e?A(IK1l+[Kal=IKshg2BAN_ 5 e2B(IK[+[Kal+KsD ~ . (36)
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0 O..25 0.5 0.75 1
1K

Ah/K

1K
0.3
X 0.2
Ky
<
Y2 = 0.75
~v3 =0.10
0.1
0 A i
0 0.25 0.5
1K

FIG. 6. Critical lines of an Ising antiferromagnet on a honey-
comb lattice:K; <0, K,<0, andK3<0.

or, upon discarding smaller terms,

28Kl +1Kzl ~ K3 g2BAN_ 9 g2B(IKy| +[Kol +IKsh <~ 0 (37)
which reduces to
Ah~3KTIn2+2|K,. (38

The slope of the critical line af=0 is positive, which im-
plies that the most inert temperature is not zeyg+ 0. The
T—0 limit of Ah depends only on the least negative cou-
pling coefficient,K .

In the exceptional case whéfy, =K, instead of Eq(36),
we have

o= 2B(K1|+2|K3)) g8BAN_ 40— 2BIK3l g4BAN | 402B]K1] g2BA

73

0'20.2 04 06 08

Y2

FIG. 7. Critical temperature,(y,,y3) of an Ising antiferromag-
net on a honeycomb lattice: all cases.

FIG. 8. The most inert pointsAz,(y2,¥s) and 7(v2,v3):

K;1<0, K,<0, andK;<0.
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— 2e?BK1+2lKg) < . (39

In the T—0 limit, only the last two terms of Eq39) are
dominant and thus we have,

Ah~— 1kTIn2+2|Ky). (40)

The slope of the critical line ak=0 is negative in this case.

In order to determine the constahtiet us again consider
the spin configuration of the ground state. The energy
is E= |Kl|2<ij)sisj + |K2|E<ij>SiSj + | K3|E<ij>SiSj —hZ;s;.
Whenh is small, the lowest energy spin configuration is as
shown in Fig. 9a), andE=(—|K|—|Ky|—|K3|)N/2. This
corresponds to an antiferromagnetic state.hlfincreases
enough, it settles in a paramagnetic stdfgy. 9(d)] with a
lower energyE=(|K;|+|Ky|+|K3—2h)N/2. The transi-
tion takes place when the energies of the two states become
identical and h=|K;|+|K,|+|Ks]. Thus we obtain
A=2[Ks|/(|Ky|+[Ko| +[Ks[)=2y3/(1+ yo+ys). A de-
pends on the ratio of the coupling constants. This yiéds
=£ in the isotropic case.

B. Case(ii): K;<0, K,>0, K3>0

Rewriting Eq.(32) in terms of magnitudes of coupling
coefficients, we obtain the Ising partition function on an el-
ementary cycle,

z(T,h) =e?AKa* K3*|K1|)(eﬁ,3h+ e 68y 4 2(872’8“(1‘ + @2B8K;
+e2PKa) (g4 e~ 4PN 1 [2(e2PIK1l 4 g2PK2
1+ @2BK3 L @ 2BIK1l L o= 28Kz o 2BK3)
4 e*ZB(|K1|+ Ko+Kgz) 4 e*Zﬁ(* |K1|+Ky—K3z)
1 e 2B~ [Kal +Kg—K2))(g2Bh 4 o~ 28Ny
+ 2@2B(K1|+Ko+Ka) 4 9@2B(—Ky|+Kp—Ky)
+ 2e2B(—IKq[+K3=K3) 1 g2BIK1l 1 4= 28K2

+ 4o 2BK3 4 Do 2B(~[Kq|+KotKg) (41

Making the transformation we obtain the equation for the
critical line,

e2B(KatKa=[Ke) (BB (IND) 1 g=6Af(IN)) 4 o(— @~ 2BIK1l 4 g2BK>

+2BKa) (911N 4 g=4BT(ND) 4 [ 2(2BIK1l 4 g2BK2

(a) configuration A

(b) configuration B

(c) configuration C

(d) configuration D

FIG. 9. Possible antiferromagnetic statesTat0 on a honey-

comb lattice.

+ @23 _ g~ 2BIKq| _ g= 28Ky _ g~ 2BK3) behaviors of Eq(42) are quite different. Let us define three
parameters|K,| =K, K,=v,K, andK;=y;K. We made a

+ e 2B(Kq|+Ka+Kg) | g=2B(~[Kg|+Ko~Kg)

few plots of Eq.(42) for different combinations of ¥, y3)

—2B(~ K| +Kg—Kg) 7, a2BF(N]) o o= 2BF(I]) in Eig. 10. We no'FiC.e a few facts. o
te I(e +e ) (i) The T=0 limit of h, is, for all combinations of
— 22B(Ky|+Ka+K3) _ 9a2B(—[Kq|+Ky=Ky) (v2,73),

— 2e2B(~IKi|+K3=Kp) 4 402BIK1| _ g0—28Ks _ go—2BKs

— 2@ 2B(=|Kq|+Ky+K3) — . (42)

Ahc=min(§[K4[,2K3). (43

(i) Casey,= v,: asK is increased, ify;<3, Az, mono-

We may assumé&,=K; without loss of generality. De- tonically increases to %, implying thatAh.— 2K3. Other-

pending on the relative magnitudes|#f;|, K,, andKg, the  wise, 7. reaches a maximum and then decreases to its final
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FIG. 10. Critical lines of an Ising antiferromagnet on a honey- 1 ‘1 2 = 14 ;

comb lattice:K; <0, K,>0, andK;>0.
value, 3, implying thatAh,— 3|K;|. The maximum value of 72
7c IS an increasing function ofs.
(iii) Casey,# y3: asK is increased, at,=3 or y;=3 FIG. 11. The most inert pointsA7,(v2,v3) and 7y(v2, vs):

(implying 2K3;=2|K,|), Az, monotonically increases to Ki<0,K;>0, andK3>0.
£|K,|. Otherwiser, reaches a maximum and then decreases
to its final value ax is increased. The maximum value of — 2e2B([K1|+Ka+K3) . (44)
7¢ IS an increasing function of;.

We made a contour plot ofy,, v3,7:), which is identical ) .
to Fig. 7. The contours ofy,,vs,A7,) are shown in Fig. There arle two cases that we have to consi@®ry;<3 and
11(a). We need to consider only the upper region of the(® ¥3>3.
diagonaly,= y; where the conditiony,= vy, is satisfied. Its
profile is no longer a straight line but a convex curve like Case (ji-a): y3<3
that of Fig. .2. In the regiory;=<3 the contour rises sharply SinceAh~ 2K in the T— 0, limit, the two largest terms
across the I|r_1ey3= const, but hard_ly changes along_ the _Ilne. in Eq. (44) are,
Beyond the liney;= 3 it gradually rises. Along the direction
y,=const it is steeper than along the diagonal line. The
contours of ¢/,,y3,7m) are shown in Fig. 1(b). There are 2Pl T Ko Ke g2BAN_ 2 2B(Kil Kot Ka)~ 0, (45)
valleys alongy;=3 and y,=y;<3, where the maximum
occurs only atr,,=0. As you go away from these two lines
the location of the maximum shifts towards the zero-field
critical temperature.

In order to obtain the approximate form of the critical line Ah~3KT In2+ 2K, (46)
in the T—0 limit, let us find the largest terms in E¢42)

within the first-order approximation. Let us consider the . . i ) .
case,y,# vs first: Again the slope of the critical line &t=0 is positive. The

T—0 limit of Ah depends only on the smaller of the two
e2P(KatKa=|Ki))gbBAN | 528K gaBAN | @2B(IK1|+K2—Kg)g2BAh  paositive coupling coefficient ;.

which reduces to
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Case (ii-b): y3> 3 C. Casel(iii): K;>0, K,<0, K3<0
Since Ah~2|K,| in the T—0, limit, the two largest Rewriting the Ising partition function on an elementary
terms in Eq.(44) are cycle in terms of magnitudes of coupling coefficients, we
obtain

2B(Kp+K3— K1) @BBAh_ 5 a2B(IK [+ Ko+ Kg)

e e 2e 0, 4
@7 (T, h) = e2BK1~ K2 =IK3l)(gbBh 4 g =6BNy | o (@2AKy

which reduces to +e*ZB\Kz\+e*25‘K3‘)(e4/3h+e*4:Bh)+[2(e2ﬂK1

Ah=~Z KT In2+ §|K,]|. (48 + e2BIKzl | g2BIKs| | o=2BKy 4 = 28IKal | o=2IK3])

Again the slope of the critical line & =0 is positive. The + @2B(K1F Kol +[Kal) 1 @~ 28K+ Kol =[K3))
T—0 limit of Ah depends only on the negative coupling
coefficient,K.

In the exceptional case when > y; and y;=3, Eq. (44) + 2@~ 2B(Ky+[Kal+|Kg)) 4 9 @2B(K1+|Kol~[Ksl)
can be rewritten as

+ efzﬁ(Klf ‘K2‘+|K3‘)](ezﬂh+ efzﬁh)

2B(K1— Ko +|K3|) —2BK, 2B|K,|
28K~ (2/3)[Ky[]g6BAN | 92BK,68BAN | 2B[Ky+(2/3)|Ky[] g2BAN +2e +4e +4e

26Kl —2B(Kq = [Ko| = [Kg)
— 228K+ (43Kl . (49) +4ePl%sl+2e 17 K2~ K3, (54)

All four terms of Eq. (49) are equally large. Assuming Making the transformation we obtain the equation for the
' . ' critical line,

exp(28Ah) =a,expGHK,)), we obtain meatd

— @2B(K1— Kol =IK3])( @8Bf(Ih]) 4 g —6Bf(|h]) 28K

Ah~1KT Ina,;+ 2 |[Ky|~—0.1814 7&T+2K,, (500 & = - c(e7+e )+2(e™
. . s _e_zﬁ‘KZ‘_e_zﬁ‘K3‘)(e4ﬁf(‘h|)+e_45f(|h‘))_|_[2(62:BK1

whereal=§[—2+(1/c1)+c_1] with ¢, = (28+ y783)"". 1 626K 1 g26IKe|_ 26Ky _ - 26lKal _ g 261K

In the case wheny,= v3, instead of Eq(44), we have

2B(Kq1+|Ks|+|K —2B(K1+|Ks|—=|K
2B(2Ks~[Kq]) gBBAN | o2BKagdBAN | 462BlK1|g2BAN — @2B(Ky [Kal+] 3l — @ 2B(Ky K| =[K3)

28K+ 2Ke)_ g 5 — @ 2B(K1=[Kgl+[Kg) (@28 (D) 4 g=28F(IND)y
1+ 27 2B(K1+ Kol +[Kg|) 4 9a2B(Ky+|Ka| = [K3])
Case (ii-C): y,= y3<3
A ) 1+ 22B(K1=[Ka| +[K3l) _ 4o 28K1 4 4a28IK2l 1 40281K3l
Only the last two terms of Eq51) are dominant, and we

have 1+ 2e 28K~ Ko~ [K3h = g, (55)

~_1
Ah~=2KkT In2+2Ks. (52) Let us assuméK,|=|K;| without loss of generality. Let

us again define three parameteks,=K, |K,|=1y,K, and
|K3|=v3K. We made a few plots of Eq55) for different
Only the first and last terms of E¢b1) are dominant, and combinations of §,,y3). As we see in Fig. 12, the critical
we have Eqs(47) and(48). That is, line is interesting and complicated in this case. The bulge on
1 , the right means that the antiferromagnetic phase transition is
Ah=gkT In2+35]Ky|. possible above the zero-field critical temperature. As the
magnetic-field strength is increased, the critical temperature
rises, whereas it decreases in ca@esand (ii). But as the
field is increased furtherr(h) eventually begins to fall
Ah~1kT Ina,+2Ks~—0.511 798T+2K;, (53 again. This type of behavior was conjectured for a fcc lattice
[14] and found in the antiferromagnetic triangular Ising
wherea,= [ — 4+ (4/c,) +c,], with c,= (35+ V1161)°, model[16,23. In the bulge region the system begins from a
Let us findA from the spin configuration of the ground disordered state in the zero-field limit. As you increase the
state. The energy is E=|K,|3 ;55— KoZ())SiS, field strength the system enters into an antiferromagnetic
— K32 ijysisj—hZ;s;. Whenh is small, the spin configura- phase and then into a paramagnetic phase.
tion is as shown in Fig. @) (K, is the vertical link} and The overall beha\{lor of thg critical line is as foI_Iows.
E=(—|K4|—K,—K3)N/2. This corresponds to an antiferro- (i) The T—0 limit of h. is, for all combinations of
magnetic state. Ash increases, the spin configuration (72, 73),
changes into a paramagnetic stfffég. 9d)], with a lower

Case (ii-d): y,= y3> 3

However, if y,=v;=3, all four terms of Eq.(51) are
equally large and we have

energy E=(|K;|—K,—K3—2h)N/2. The transition takes Ahc= K| +[Ks|. (56)
place when the energies of the two states become identical,
or h=|K,|. We therefore obtail=2K;/|K,|=2y5 for the (i) Casey,=y3: below y,~0.6725 the line starts mov-

casegii-a) and (ii-c) andA=3 for casegdii-b) and(ii-d) and  ing to the up-left direction towards the end point as in the
the two exceptional cases. cases(i) and (ii). Above y,~0.6725 the line veers to the
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FIG. 12. Critical lines of an Ising antiferromagnet on a honey- 0'20,2 0,6‘

comb lattice:K >0, K,<0, andK;<0.
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up-right direction, then turns to left, and rises monotonically
up to its final value in the limiT=0. : :
(i) Casey,# ys: the line has both behaviors as in the Kzzlg;]'alr%éil%? locationshns(72.vs) andm(r2.7s): Ki=0,
v,= 3 case but it is not easy to make compact descriptions.
It veers up-right and turns left, or moves up-left from the
outset, depending on the values of,(y3). It is best illus- e?AN~ g2A(IKal +[Ks), (58
trated in Fig. 13, where the values #éfp, and 7, at the
turning points are shown.
We made contour plots ofy,,7y3,7.), Which is again  Which reduces to
identical to Fig. 7. The contours ofyg,y3,Amn,) are shown
in Fig. 13a). Along any direction in they,-y; plane its
profile is practically linear with the same slope. The contours Ah= (|K5|+[Kg]). (59
of (y2,v3,7) are shown in Fig. 1®). Along the direction
v,= 3 it increases very slowly but as you go away from this
direction its slope becomes steeper and its profile is close to The slope of the critical line af=0 is zero. TheT—0

linear. The bulge appears when the poim (y5) falls out-  limit of Ah depends only on the negative coupling coeffi-
side the nearly circular contour with the valwg=1. cients,K, andKsj.
Since Ah~|K,|+|Kj| in the T—0, limit, the largest Let us find A from the ground-state spin configuration.
terms in Eq.(55) are, The energy is  E=—K 2SS+ [Ko|2(ijySis;
+|K3lZijysisj—hZis;. Whenh is small, the lowest-energy
— @2P(K1=[Ka|=[Kg) 8BAN | 28K g4BAN spin configuration is as shown in Fig(c® (K is the vertical

link.) and E=(—K;—|K,|—|K3|)N/2. This corresponds to
an antiferromagnetic state. Asincreases, the spin configu-
(57) ration changes into a paramagnetic sfdfy. 9d)] with a
lower energyE=(—K;+|K,|+|Ks—2h)N/2. The transi-
or, upon discarding the last term and performing some algetion takes place when the energies of the two states become
braic manipulations, identical orh=|K,|+|K3|. Thus we obtailA=1.

— @2B(K1+[Ky| +[K3)g2BAh 1 9 2B8(Ky +[Kal=[K3) < .
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V. CONCLUSION configurations. We observed two interesting phenomena may

. . : ccur. In the cases of a square lattice wiky &0, K,<0)
In this paper we extended our approach introduced in Retc.)nd a honeycomb lattice withk(<0, K,<0, K;<0) and

[19] to an anisotropic Ising antiferromagnet on square an K,<0,K,=0, K5>0), the critical line has a positive slope

honeycomb lattices with some or all negative interaction

strengths. We proved that the exact zero-field critical condi'” the zeroT limit and thus has a maximum ata temperature
#0, except for some rare cases. This means that for a

tions of an Ising antiferromagnet are determined by the zero&m L o .
of the pseudopartition function on an elementary cycle. usdiven magnetic field phase transitions are possible at two

ing the fact that the critical point of an Ising antiferromagnetdlfferent temperatures as disputed in the past and that the

corresponds to the singularity of its free energy and the Grif_antlferromagnet IS not necessarily most inert against demag-

fiths’ smoothness postulate, we extended our previous corg-:tizmg field at the absolute Zero. We havg made plqts of the
jecture for the case with nonzero magnetic field and obtaine mtpera(;utrﬁs'm \/_\;herleffthlzintlferrtomagneftlc st)_/stem :csthmost
the critical lines of an Ising antiferromagnet on these Iattices'.n?.r anf th e crl '?.a 1€ ff.77.m "’: TFI“ atf\ unc |onsf 0 h €
Our results reasonably agree with the formula obtained b)r/a |oks) Iott' € c_ct);]Jp mggos ﬁlgnKs.<n0 ef_callgedc_) a honey-
Miiller-Hartmann and Zittartz. It will be useful to check our cOMP lattice with K;,>0, K,<0, K3<0) a field-driven an-

results for the honeycomb lattice by different means such agferromagnetm phase transition is possible. We made plots

Monte Carlo simulation or series analysis. .Of the maximum temp_eratqr% where the phas_e transition
The critical lines are depicted for each different combina-'S POSS'b'e and the_ critical f'.el.ds"b at, as functions of the

tion of the coupling coefficients. We also made plots of the'atios of the coupling coefficients.

zero-field critical temperatures of an Ising antiferromagnet

on square and honeycomb lattices as functions of the ratios

of the coupling coefficients. The loW-limit of the critical This work was funded by Pohang University of Science &

line is obtained for each case from the ground-state spiTechnology.
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